
LINEAR BOUNDED AUTOMATA 

LBAS 
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Linear Bounded Automata (LBAs) 

are the same as Turing Machines 

with one difference: 

The input string tape space 

is the only tape space allowed to use 
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Input string 
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All computation is done between end markers 

Linear Bounded Automaton (LBA) 
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We define LBA’s as NonDeterministic 

Open Problem: 

NonDeterministic LBA’s 

have same power with 

Deterministic LBA’s ? 
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Example languages accepted by LBAs: 

}{ nnn cbaL 

}{ !naL 

LBA’s have more power than NPDA’s 

Conclusion: 
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Later in class we will prove: 

LBA’s have less power 

than Turing Machines  



A UNIVERSAL TURING MACHINE 
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Turing Machines are “hardwired” 

they execute 

only one program 

A limitation of Turing Machines: 

Real Computers are re-programmable 
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Solution: Universal Turing Machine 

• Reprogrammable machine 

 

• Simulates any other Turing Machine 

Attributes: 
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Universal Turing Machine  

simulates any other Turing Machine M

Input of  Universal Turing Machine: 

Description of transitions of M

Initial tape contents of  M



11 

Universal  

Turing  

Machine 
M

Description of  

Tape Contents of  

M

State of  M

Three tapes 

Tape 2 

Tape 3 

Tape 1 
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We describe Turing machine  

as a string of symbols: 

 

We encode        as a string of symbols 

M

M

Description of  M

Tape 1 
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Alphabet Encoding 

Symbols: a b c d 

Encoding: 1 11 111 1111
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State Encoding 

States: 1q 2q 3q 4q 

Encoding: 1 11 111 1111

Head Move Encoding 

Move: 

Encoding: 

L R

1 11



15 

Transition Encoding 

Transition: ),,(),( 21 Lbqaq 

Encoding: 10110110101

separator 
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Machine Encoding 

Transitions: 

),,(),( 21 Lbqaq 

Encoding: 

10110110101

),,(),( 32 Rcqbq 

110111011110101100

separator 
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Tape 1 contents of Universal Turing Machine: 

 

        encoding of the simulated machine 

        as a binary string of 0’s and 1’s 

M
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A Turing Machine is described  

with a binary string of 0’s and 1’s 

The set of Turing machines forms a language: 

each string of the language is 

the binary encoding of a Turing Machine 

Therefore: 
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Language of Turing Machines 

L = { 010100101, 

 

        00100100101111, 

 

        111010011110010101, 

        

        …… } 

(Turing Machine 1) 

(Turing Machine 2) 

…… 



COUNTABLE SETS 
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Infinite sets are either:  Countable 

 

        or 

 

 Uncountable 
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Countable set: 

There is a one to one correspondence 

between  

elements of the set 

and  

positive integers 
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Example: 

Even integers: ,6,4,2,0

The set of even integers 

is countable 

Positive integers: 

Correspondence: 

,4,3,2,1

n2 corresponds to 1n
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Example: The set of rational numbers 

is countable 

Rational numbers: ,
8

7
,

4

3
,

2

1
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Naïve Proof 

Rational numbers: ,
3

1
,

2

1
,

1

1

Positive integers: 

Correspondence: 

,3,2,1

Doesn’t work: 

we will never count  

numbers with nominator 2: 
,

3

2
,

2

2
,

1

2
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Better Approach 
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Rational Numbers: ,
2

2
,

3

1
,

1

2
,

2

1
,

1

1

Correspondence: 

Positive Integers: ,5,4,3,2,1
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We proved: 

 

     the set of rational numbers is countable 

     by describing an enumeration procedure  
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Definition 

An enumeration procedure for       is a 

Turing Machine  that generates 

all strings of       one by one 

Let        be a set of strings  S

S

S

and 

 

Each string is generated in finite time 
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Enumeration 

Machine for  
,,, 321 sss

Ssss ,,, 321

Finite time: ,,, 321 ttt

strings 

S
output 

(on tape) 
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Enumeration Machine 
Configuration 

Time 0  

0q

Time 

sq

1x 1s#1t
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Time 

sq

3x 3s#3t

Time 

sq

2x 2s#2t
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A set is countable if there is an 

enumeration procedure for it 

Observation: 
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Example: 

The set of all strings 

is countable  

},,{ cba

We will describe the enumeration procedure 

Proof: 
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Naive procedure: 

Produce the strings in lexicographic order: 

a

aa
aaa

......

Doesn’t work: 

          strings starting with      

          will never be produced  

b

aaaa
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Better procedure: 

1. Produce all strings of length 1 

 

2. Produce all strings of length 2 

 

3. Produce all strings of length 3 

 

4. Produce all strings of length 4 

 

.......... 

Proper Order 
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Produce strings in  

    Proper Order: 

aa

ab
ac
ba

bb

bc
ca

cb
cc

aaa
aab
aac
......

length 2 

length 3 

length 1 
a
b
c
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Theorem: The set of all Turing Machines 

is countable 

Proof: 

Find an enumeration procedure  

for the set of Turing Machine strings 

Any Turing Machine can be encoded 

with a binary string of 0’s and 1’s 
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1.  Generate the next binary string  

     of 0’s and 1’s in proper order 

 

2.  Check if the string describes a  

     Turing Machine 

           if YES: print string on output tape 

           if NO:  ignore string 

Enumeration Procedure: 

Repeat 



UNCOUNTABLE SETS 
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A set is uncountable  

if it is not countable 

Definition: 
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Theorem: 

Let       be an infinite countable set 

 

The powerset         of       is uncountable  
S2 S

S
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Proof: 

Since       is countable, we can write  S

},,,{ 321 sssS 

Elements of S
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Elements of the powerset have the form: 

},{ 31 ss

},,,{ 10975 ssss

…… 
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We encode each element of the power set 

with a binary string of 0’s and 1’s 

1s 2s 3s 4s 

1 0 0 0}{ 1s

Powerset 

element 

Encoding 

0 1 1 0},{ 32 ss

1 0 1 1},,{ 431 sss






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Let’s assume (for contradiction)  

that the powerset is countable. 

Then:      we can enumerate  

               the elements of the powerset 
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1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

Powerset  

element 
Encoding 

1t

2t

3t

4t










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Take the powerset element 

whose bits are the complements  

in the diagonal 
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1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

1t

2t

3t

4t









New element: 0011

(birary complement of diagonal) 
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The new element must be some 

of the powerset  
it

However, that’s impossible: 

the i-th bit of       must be  

the complement of itself 

from definition of it

it

Contradiction!!! 
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Since we have a contradiction: 

The powerset         of       is uncountable  S2 S
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An Application: Languages 

Example Alphabet : },{ ba

The set of all Strings: 

},,,,,,,,,{},{ * aabaaabbbaabaababaS 

infinite and countable 
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Example Alphabet : },{ ba

The set of all Strings: 

},,,,,,,,,{},{ * aabaaabbbaabaababaS 

infinite and countable 

A language is a subset of     : 

},,{ aababaaL 

S
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Example Alphabet : },{ ba

The set of all Strings: 

},,,,,,,,,{},{ * aabaaabbbaabaababaS 

infinite and countable 

The powerset of       contains all languages: 

}},,,}{,{},{},{{2 aababaabaaS 

1L 2L 3L 4L

uncountable 



S
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Languages: uncountable 

Turing machines: countable 

1L 2L 3L kL

1M 2M 3M

 

?

There are infinitely many more languages 

than Turing Machines 
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There are some languages not accepted 

by Turing Machines 

These languages cannot be described 

by algorithms 

Conclusion: 


