LINEAR BOUNDED AUTOMATA
LBAS




Linear Bounded Automata (LBAs)
are the same as Turing Machines
with one difference:

The input string tape space
is the only tape space allowed to use
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We define LBA's as NonDeterministic

Open Problem:

NonDeterministic LBA's
have same power with
Deterministic LBA's ?




Example languages accepted by LBAs:

Conclusion:

LBA’'s have more power than NPDA's Q




Later in class we will prove:

LBA's have less power
than Turing Machines




A UNIVERSAL TURING MACHINE




A limitation of Turing Machines:

Turing Machines are “hardwired"

\ J
Y

they execute
only one program

Real Computers are re-programmable




Solution:  Universal Turing Machine

Attributes:

* Reprogrammable machine

» Simulates any other Turing Machine




Universal Turing Machine

simulates any other Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Initial tape contents of M




Three tapes

Tape 1

Universal
Turing
Machine

ﬁescrib‘rion of M

Tape 2

\
Tape Contents of M

Tape 3

State of M



Tape 1

Description of M

We describe Turing machine M
as a string of symbols:

We encode M as a string of symbols




Alphabet Encoding

Symbols: @ b C d

N

Encoding: 1 11 111 1111




State Encoding

States: 01 d2 03 04

ool b

Encoding: 1 11 111 1111

Head Move Encoding
Move: L R

l l

Encoding: 1 11




Transition Encoding

Transition:  o(0y,a) =(g»,b, L)

e

Encoding: 10101101101

|

separator




Machine Encoding

o(0p,a)=(gp,b,L)  o(qgz,b)=(a3,C,R)

10101101101 00 1101101110111011

T

separator



Tape 1 contents of Universal Turing Machine:

encoding of the simulated machine M
as a binary string of O's and 1's




A Turing Machine is described
with a binary string of O's and 1's

Therefore:

The set of Turing machines forms a language:

each string of the language is
the binary encoding of a Turing Machine




Language of Turing Machines

L = { 010100101, (Turing Machine 1)
00100100101111,  (Turing Machine 2)

111010011110010101, -




COUNTABLE SETS




Infinite sets are either: Couhtable

or

Uncountable




Countable set:

There is a one to one correspondence
between

elements of the set

and

positive integers




Example:  The set of even integers
is countable

Evenintegers: 0, 2, 4, 6, ...

Correspondence:

Positive integers: 1, 2, 3, 4, ...

2N corresponds to n+1a




Example:  The set of rational numbers
is countable

Rational numbers:
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Naive Proof

. | ) 1 1 1
tional numbers: 7y <y <,
ational number 1" 92" 2
Correspondence:
Positive integers: 1, 2, 3,
Doesn't work:
we will never count 2 2 2
numbers with nominator 22 1 2° 3
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Rational Numbers:

2
1
Correspondence: \

Positive Integers: L1 2, 3, 4, 5, ...




We proved:

the set of rational nhumbers is countable
by describing an enumeration procedure




Definition
Let S be aset of strings

An enumeration procedure for S isa
Turing Machine that generates
all strings of S one by one

and

Each string is generated in finite ‘rimea




strings $1,52,83y... €9

Enumeration output
: > 51,592,953, ...
Machine for S (on tape)

>

A A

Finite time:  t, o, ta,...




Enumeration Machine
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Observation:

A set is countable if there is an
enumeration procedure for it




Example:

The set of all strings {a,b,c}"
is countable

Proof:

We will describe the enumeration procedure




Naive procedure:

Produce the strings in lexicographic order:

Doesn't work:
strings starting with D
will never be produced




Better procedure: Proper Order

1. Produce all strings of length 1
2. Produce all strings of length 2
3. Produce all strings of length 3

4. Produce all strings of length 4




A
b } length 1
C

aa

ab

: : acC
Produce strings in ba

Proper Order: bb - length 2
bc

aab - jength 3 @




Theorem:  The set of all Turing Machines
is countable

Proof: Any Turing Machine can be encoded
with a binary string of O's and 1's

Find an enumeration procedure
for the set of Turing Machine sTrias




Enumeration Procedure:

Repeat

1. Generate the next binary string
of O's and 1's in proper order

2. Check if the string describes a
Turing Machine
if YES: print string on output tape
if NO: ignore string O




UNCOUNTABLE SETS




Definition: A set is uncountable
if it is not countable




Theorem:

Let S be an infinite countable set

The powerset 2° of S is uncountable




Proof:

Since S is countable, we can write

S ={5%,59,53,...}

Elements of S




Elements of the powerset have the form:
151,53}

{S5,57:59,%10}




We encode each element of the power set
with a binary string of O's and 1's

Encoding
Powerset
\ element S S2 53 34
{Sl} 1 0 0 0




Let's assume (for contradiction)
that the powerset is countable.

Then:  we can enumerate
the elements of the powerset




Powerset

element Encoding
ty 1 0 O
t, 1 1 0
{3 1 1 0



Take the powerset element
whose bits are the complements
in the diagonal




New element: 0011...
©

(birary complement of diagonal)




The new element must be some
of the powerset

However, that's impossible:

from definition of T

the i-th bit of 1j must be
the complement of itself

Contradictionlll




Since we have a contradiction:

The powerset 25 of S is uncountable




An Application: Languages
Example Alphabet : {@,b}
The set of all Strings:

S :{a,b}* ={A,a,b,aa,ab,ba,bb,aaa,aab,...}
infinite and countable



Example Alphabet : {a,b}
The set of all Strings:

S :{a,b}* ={A1,a,b,aa,ab,ba,bb,aaa,aab,.. .}
infinite and countable

A language is a subset of S :

L ={aa, ab, aab}




Example Alphabet : {a,b}
The set of all Strings:

S :{a,b}* ={A1,a,b,aa,ab,ba,bb,aaa,aab,.. .}
infinite and countable

The powerset of S contains all languages:

2° —{{1} {a},{a,b}{aa,ab,aab},.. }
Ll L2 L3 L4 coe e

uncountable




Languages: uncountable

L L, Ly Ly
Lol l
M; M, Mg ?

Turing machines: countable

There are infinitely many more languages
than Turing Machines (<o




Conclusion:

There are some languages not accepted
by Turing Machines

These languages cannot be described
by algorithms




