
LINEAR BOUNDED AUTOMATA

LBAS

 1

2

Linear Bounded Automata (LBAs)

are the same as Turing Machines

with one difference:

The input string tape space

is the only tape space allowed to use

3

[]a b c d e

Left-end

marker

Input string

Right-end

marker

Working space

 in tape

All computation is done between end markers

Linear Bounded Automaton (LBA)

4

We define LBA’s as NonDeterministic

Open Problem:

NonDeterministic LBA’s

have same power with

Deterministic LBA’s ?

5

Example languages accepted by LBAs:

}{ nnn cbaL 

}{ !naL 

LBA’s have more power than NPDA’s

Conclusion:

6

Later in class we will prove:

LBA’s have less power

than Turing Machines

A UNIVERSAL TURING MACHINE

 7

8

Turing Machines are “hardwired”

they execute

only one program

A limitation of Turing Machines:

Real Computers are re-programmable

9

Solution: Universal Turing Machine

• Reprogrammable machine

• Simulates any other Turing Machine

Attributes:

10

Universal Turing Machine

simulates any other Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Initial tape contents of M

11

Universal

Turing

Machine
M

Description of

Tape Contents of

M

State of M

Three tapes

Tape 2

Tape 3

Tape 1

12

We describe Turing machine

as a string of symbols:

We encode as a string of symbols

M

M

Description of M

Tape 1

13

Alphabet Encoding

Symbols: a b c d 

Encoding: 1 11 111 1111

14

State Encoding

States: 1q 2q 3q 4q 

Encoding: 1 11 111 1111

Head Move Encoding

Move:

Encoding:

L R

1 11

15

Transition Encoding

Transition:),,(),(21 Lbqaq 

Encoding: 10110110101

separator

16

Machine Encoding

Transitions:

),,(),(21 Lbqaq 

Encoding:

10110110101

),,(),(32 Rcqbq 

110111011110101100

separator

17

Tape 1 contents of Universal Turing Machine:

 encoding of the simulated machine

 as a binary string of 0’s and 1’s

M

18

A Turing Machine is described

with a binary string of 0’s and 1’s

The set of Turing machines forms a language:

each string of the language is

the binary encoding of a Turing Machine

Therefore:

19

Language of Turing Machines

L = { 010100101,

 00100100101111,

 111010011110010101,

 …… }

(Turing Machine 1)

(Turing Machine 2)

……

COUNTABLE SETS

 20

21

Infinite sets are either: Countable

 or

 Uncountable

22

Countable set:

There is a one to one correspondence

between

elements of the set

and

positive integers

23

Example:

Even integers: ,6,4,2,0

The set of even integers

is countable

Positive integers:

Correspondence:

,4,3,2,1

n2 corresponds to 1n

24

Example: The set of rational numbers

is countable

Rational numbers: ,
8

7
,

4

3
,

2

1

25

Naïve Proof

Rational numbers: ,
3

1
,

2

1
,

1

1

Positive integers:

Correspondence:

,3,2,1

Doesn’t work:

we will never count

numbers with nominator 2:
,

3

2
,

2

2
,

1

2

26

Better Approach

1

1

2

1

3

1

4

1

1

2

2

2

3

2

1

3

2

3

1

4









27

1

1

2

1

3

1

4

1

1

2

2

2

3

2

1

3

2

3

1

4









28

1

1

2

1

3

1

4

1

1

2

2

2

3

2

1

3

2

3

1

4









29

1

1

2

1

3

1

4

1

1

2

2

2

3

2

1

3

2

3

1

4









30

1

1

2

1

3

1

4

1

1

2

2

2

3

2

1

3

2

3

1

4









31

1

1

2

1

3

1

4

1

1

2

2

2

3

2

1

3

2

3

1

4









32

Rational Numbers: ,
2

2
,

3

1
,

1

2
,

2

1
,

1

1

Correspondence:

Positive Integers: ,5,4,3,2,1

33

We proved:

 the set of rational numbers is countable

 by describing an enumeration procedure

34

Definition

An enumeration procedure for is a

Turing Machine that generates

all strings of one by one

Let be a set of strings S

S

S

and

Each string is generated in finite time

35

Enumeration

Machine for
,,, 321 sss

Ssss ,,, 321

Finite time: ,,, 321 ttt

strings

S
output

(on tape)

36

Enumeration Machine
Configuration

Time 0  

0q

Time

sq

1x 1s#1t

37

Time

sq

3x 3s#3t

Time

sq

2x 2s#2t

38

A set is countable if there is an

enumeration procedure for it

Observation:

39

Example:

The set of all strings

is countable

},,{ cba

We will describe the enumeration procedure

Proof:

40

Naive procedure:

Produce the strings in lexicographic order:

a

aa
aaa

......

Doesn’t work:

 strings starting with

 will never be produced

b

aaaa

41

Better procedure:

1. Produce all strings of length 1

2. Produce all strings of length 2

3. Produce all strings of length 3

4. Produce all strings of length 4

..........

Proper Order

42

Produce strings in

 Proper Order:

aa

ab
ac
ba

bb

bc
ca

cb
cc

aaa
aab
aac
......

length 2

length 3

length 1
a
b
c

43

Theorem: The set of all Turing Machines

is countable

Proof:

Find an enumeration procedure

for the set of Turing Machine strings

Any Turing Machine can be encoded

with a binary string of 0’s and 1’s

44

1. Generate the next binary string

 of 0’s and 1’s in proper order

2. Check if the string describes a

 Turing Machine

 if YES: print string on output tape

 if NO: ignore string

Enumeration Procedure:

Repeat

UNCOUNTABLE SETS

 45

46

A set is uncountable

if it is not countable

Definition:

47

Theorem:

Let be an infinite countable set

The powerset of is uncountable
S2 S

S

48

Proof:

Since is countable, we can write S

},,,{ 321 sssS 

Elements of S

49

Elements of the powerset have the form:

},{ 31 ss

},,,{ 10975 ssss

……

50

We encode each element of the power set

with a binary string of 0’s and 1’s

1s 2s 3s 4s 

1 0 0 0}{ 1s

Powerset

element

Encoding

0 1 1 0},{ 32 ss

1 0 1 1},,{ 431 sss







51

Let’s assume (for contradiction)

that the powerset is countable.

Then: we can enumerate

 the elements of the powerset

52

1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

Powerset

element
Encoding

1t

2t

3t

4t











53

Take the powerset element

whose bits are the complements

in the diagonal

54

1 0 0 0 0

1 1 0 0 0

1 1 0 1 0

1 1 0 0 1

1t

2t

3t

4t









New element: 0011

(birary complement of diagonal)

55

The new element must be some

of the powerset
it

However, that’s impossible:

the i-th bit of must be

the complement of itself

from definition of it

it

Contradiction!!!

56

Since we have a contradiction:

The powerset of is uncountable S2 S

57

An Application: Languages

Example Alphabet : },{ ba

The set of all Strings:

},,,,,,,,,{},{ * aabaaabbbaabaababaS 

infinite and countable

58

Example Alphabet : },{ ba

The set of all Strings:

},,,,,,,,,{},{ * aabaaabbbaabaababaS 

infinite and countable

A language is a subset of :

},,{ aababaaL 

S

59

Example Alphabet : },{ ba

The set of all Strings:

},,,,,,,,,{},{ * aabaaabbbaabaababaS 

infinite and countable

The powerset of contains all languages:

}},,,}{,{},{},{{2 aababaabaaS 

1L 2L 3L 4L

uncountable



S

60

Languages: uncountable

Turing machines: countable

1L 2L 3L kL

1M 2M 3M

 

?

There are infinitely many more languages

than Turing Machines

61

There are some languages not accepted

by Turing Machines

These languages cannot be described

by algorithms

Conclusion:

